CS101 Fall 2025 :: Midterm Preparation Guide

Python Programming Fundamentals

Table of contents

1 Overview of Midterm

1.1 Exam Format
1.2 Study Tips o
2 Key Concepts by Topic
2.1 1. Python Literals and Data Types
2.2 2. Variables and Operators
2.3 3. Conditionals (if/elif/else) L o
2.4 4. Loops (for and while)
2.5 5. Strings and String Operations
2.6 6. Lists oL
2.7 7. Tuples e
2.8 8. Dictionaries e
2.9 9. Sets . . .o

3 Algorithm Concepts
3.1 Exhaustive Enumeration
3.2 Newton’s Method e

4 Sample Practice Problems

4.1 Code Tracing Practice
5 Common Mistakes to Avoid

5.1 Syntax Errors Lo

5.2 Logic Errors L

5.3 String/List Confusion Lo

6 Final Exam Preparation Checklist
6.1 Beforethe Exam

12
12
12

13
13

13
13
14
14

14

6.2 During the Exam L L 14
6.3 Key Formulas to Remember 14

1 Overview of Midterm

This study guide covers all the essential Python concepts you need to know for the midterm
exam in our course. During lab time on Thursday 23th October 2025. The exam will be 70
minutes long, closed-book, and will test your understanding of Python fundamentals and
concepts taken from the Materials pages in our course (see URL; https://cmpscl01fall20
25datastructures.github.io/site/materials/0_materials.html. In addition, this midterm will
cover chapters 1,2,3,4 and 5 of our textbook; Introduction to Computation and Programming
Using Python by John V. Guttag.

1.1 Exam Format

What will the midterm look like? The below list provides a a general idea of what to expect.

Code Output Questions: You will be given Python code and asked what it prints
Multiple Choice: Select the best answer from given options

True/False with Explanation: State whether something is true or false and explain
why

Fill-in-the-Blank: Complete code to achieve a specific result

Short Answer: Explain concepts or differences between approaches

Guttag’s textbook: Chapters 1,2,3,4 and 5

1.2 Study Tips

How can you prepare for this midterm? Your instructor has assembled a non-exhaustive short
list of some of the best ways to prepare for the midterm.

Ll

Practice writing code by hand - You will not have a computer during the exam
Trace through code step by step - Follow the execution mentally

Know the exact output format - Pay attention to spacing, quotes, brackets
Understand concepts, don’t just memorize - Know why things work the way they
do

Review common errors - Understanding what goes wrong helps you get it right

https://cmpsc101fall2025datastructures.github.io/site/materials/0_materials.html
https://cmpsc101fall2025datastructures.github.io/site/materials/0_materials.html

2 Key Concepts by Topic

Since the midterm questions draw upon lots of diverse material from the course, it might be
helpful to your studying to follow the below format. Studying concepts in these group will
help you to organize your thoughts for each type of question presented in the midterm. It is
strongly recommended that you go carefully work through each of the sections by reading the
examples, working the code and understanding how the code demonstrations the concepts at

play.

2.1 1. Python Literals and Data Types
2.1.1 What You Need to Know

o Literals are fixed values written directly in code
e Data types: int, float, str, bool
o Type conversion: int (), float(), str(), bool()

2.1.2 Key Points

Valid literals

42 # integer

3.14 # float

"hello" # string

'world' # string (single quotes also work)
True # boolean

False # boolean

Invalid literals
3.14.5 # Two decimal points
True. # Period after boolean

2.1.3 Practice Questions

Practice 1: Which of these are valid Python literals?

a) 100 b) 2.5.7 c) "Python" d) True e) 'coding'

Practice 2: What data type is each of these?

s N < M

25
3.14
"Hello"
True

2.2 2. Variables and Operators

2.2.1 What You Need to Know

o Assignment operator: = (assigns value to variable)

e Arithmetic operators: +, -, *,

/, ** (power), % (modulus)

¢« Comparison operators: ==, = < > <= >=

¢ Logical operators: and, or, not

2.2.2 Key Points

Assignment vs Equality

x=5 # Assignment (single =)

x == 5 # Comparison (double ==

Order of operations (PEMDAS)

result = 2 + 3 x 4 # Result is 14, not 20
result = (2 + 3) * 4 # Result is 20

Modulus operator

7% 3 # Result is 1 (remainder)

8 % 2 # Result is O (no remainder)

2.2.3 Practice Questions

Practice 3: What will this code output?

a =10
b=3
print(a + b)
print(a ** b)
print(a % b)

Practice 4: What will this expression evaluate to?

x = 8
result = x > 5 and x < 15

2.3 3. Conditionals (if/elif/else)
2.3.1 What You Need to Know

o if statements execute code when condition is True

o elif (else if) provides additional conditions to check

¢ else runs when no conditions are True

o Indentation matters - Use consistent spacing (usually 4 spaces)

2.3.2 Key Points

Basic structure
if conditionl:
Code runs if conditionl is True
elif condition2:
Code runs if condition2 is True (and conditionl was False)
else:
Code runs if all conditions were False

Logical operators in conditions

if x > 0 and x < 10: # Both must be true
if x < 0 or x > 100: # Either can be true
if not x == O: # Same as x != 0

2.3.3 Practice Questions
Practice 5: What will this code print if score = 857

if score >= 90:
print ("A")
elif score >= 80:
print ("B")
elif score >= 70:
print ("C")

else:
print ("F")

Practice 6: Complete this code to check if a number is even or odd:

if __________ :
print ("Even")
else:

print("0dd")

2.4 4. Loops (for and while)
2.4.1 What You Need to Know

« for loops iterate over sequences (ranges, lists, strings)
o while loops continue as long as condition is True
o range() function: range(stop), range(start, stop), range(start, stop, step)

2.4.2 Key Points

For loops with range
for i in range(5):

for i in range(2, 8):

for i in range(l, 10, 2):

-
-

H O

I—i\E\)O

(uf,o»—x

O‘I:b[\)

\I‘O'IOO

QOMO‘J»b
~

-

-
-

-

While loops

count = 0O
while count < b5:
print (count)
count += 1 # Same as count = count + 1

2.4.3 Practice Questions
Practice 7: What will this for loop print?

for i in range(2, 7, 2):
print (i)
Practice 8: Complete this while loop to print numbers 5 down to 1:

num = 5
while

2.5 5. Strings and String Operations
2.5.1 What You Need to Know

e String indexing: string[0] is first character, string[-1] is last

o String slicing: string[start:end:step]

o String methods: .lower(), .upper(), .replace(), .split(), .strip()
e F-strings: £"Hello {namel}"

2.5.2 Key Points

text = "Python"
Indexing (starts at 0)

text [0] # 'P'
text[-1] # 'n' (last character)
Slicing

text[1:4] # 'yth' (characters 1, 2, 3)
text[:3] # 'Pyt' (first 3 characters)
text[2:] # 'thon' (from position 2 to end)
text[::2] # 'Pto' (every 2nd character)

F-strings

name = "Alice"

age = 20

print(f"{name} is {age} years old")

2.5.3 Practice Questions

Practice 9: Given word = "Programming", what do these expressions return?
a) word[3:7]

b) word[-4:]
c) word[::3]

Practice 10: What will this string method output?

sentence = "Hello World"
print(sentence.replace("World", "Python").upper())

2.6 6. Lists
2.6.1 What You Need to Know

o Lists are mutable (can be changed after creation)

e List indexing and slicing works like strings

List methods: .append(), .insert(), .remove(), .pop(), .copy()
o List cloning vs list referencing

2.6.2 Key Points

Creating and modifying lists

fruits = ["apple", "banana", "cherry"]

fruits.append("date") # Add to end

fruits.insert(l, "blueberry") # Insert at position 1
fruits.remove("banana") # Remove by value

last = fruits.pop() # Remove and return last item

Cloning vs Referencing

listl = [1, 2, 3]
list2 = listl # Reference (same list!)
list3 = listl.copy() # Clone (independent copy)

List comprehensions
squares = [x**2 for x in range(5)] # [0, 1, 4, 9, 16]
evens = [x for x in range(10) if x % 2 == 0] # [0, 2, 4, 6, 8]

2.6.3 Practice Questions
Practice 11: What will this code output?

numbers = [1, 2, 3]
numbers .append (4)
numbers.insert (0, 0)
print (numbers)

Practice 12: What’s the difference between these two operations?

original = [1, 2, 3]
copy_a = original
copy_b = original.copy()
original.append (4)

2.7 7. Tuples
2.7.1 What You Need to Know

o Tuples are immutable (cannot be changed after creation)

¢ Use parentheses instead of square brackets
o Tuple unpacking: x, y, z = (1, 2, 3)
e Good for coordinates, RGB values, or any fixed data

2.7.2 Key Points

Creating tuples

point = (10, 20)

rgb = (255, 128, 0)

info = ("Alice", 20, "CS")

Accessing elements (like lists)
x = point[0] # 10
name = info[0] # "Alice"

Tuple unpacking

X, y = point # x=10, y=20
name, age, major = info

2.7.3 Practice Questions

Practice 13: What will this code output?
data = (5, 10, 15, 20)

a, b, c, d = data
print(a + c)

2.8 8. Dictionaries
2.8.1 What You Need to Know

¢ Key-value pairs: {"key": "value"}

e Accessing values: dict["key"]
Adding/modifying: dict["new_key"] = "value"

¢ Dictionary methods: .keys(), .values(), .items()

10

2.8.2 Key Points

Creating and using dictionaries
student = {"name": "Bob", "age": 19, "grade": 85}

Accessing and modifying

name = student["name"] # "Bob"
student["age"] = 20 # Modify existing
student["gpa"] = 3.5 # Add new key-value pair

Iterating through dictionaries
for key, value in student.items():
print (f"{key}: {valuel}")

2.8.3 Practice Questions

Practice 14: What will this code output?

scores = {"Alice": 85, "Bob": 92, "Carol": 78}
scores["Alice"] = 87

print (len(scores))
print(scores["Bob"])

2.9 9. Sets
2.9.1 What You Need to Know

o Sets contain unique elements (no duplicates)
o Set operations: union (|), intersection (&), difference (-)
e Use curly braces: {1, 2, 3}

2.9.2 Key Points

11

Creating sets

numbers = {3, 1, 4, 1, 5} # Becomes {1, 3, 4, 5}
setl = {1, 2, 3, 4}
set2 = {3, 4, 5, 6}

Set operations

intersection = setl & set2 # {3, 4}
union = setl | set2 # {1, 2, 3, 4, 5, 6}
difference = setl - set2 # {1, 2}

2.9.3 Practice Questions

Practice 15: What will this set operation return?

A {1, 2, 3, 4, 5}
B {4, 5, 6, 7, 8}
result = A & B

3 Algorithm Concepts

3.1 Exhaustive Enumeration

« Systematic checking of all possibilities
e Used for finding perfect squares, cubes, etc.
e Limitation: Only works for integer solutions

3.2 Newton’s Method

o Iterative approximation technique

¢ Finds approximate roots of equations

e Advantage: Very fast convergence

¢ Quadratic convergence: Error roughly squares each iteration

12

4 Sample Practice Problems

4.1 Code Tracing Practice
Problem 1: What is the complete output?
for i in range(3):

for j in range(2):

print (£"({i},{jH)™)

Problem 2: What values do these variables have at the end?

=5
10
» Y=Yy, x+3

Mo M
I

Problem 3: What will this nested condition print?

score = 85
if score >= 80:
if score >= 90:
print ("Excellent")
else:
print ("Good")
else:
print ("Needs improvement")

5 Common Mistakes to Avoid

5.1 Syntax Errors
e Forgetting colons after if, for, while, def statements

¢ Inconsistent indentation - Python is very strict about this
e Using = instead of == for comparisons

13

5.2 Logic Errors

¢ Off-by-one errors in ranges and indexing
¢ Confusing assignment and comparison operators
o Not handling edge cases (empty lists, zero values, etc.)

5.3 String/List Confusion

e Strings are immutable, lists are mutable
e String slicing returns a string, not individual characters
o List methods like append() modify the original list

6 Final Exam Preparation Checklist

6.1 Before the Exam

[l Review all code examples in this study guide

O Practice writing code by hand (no computer!)

[0 Work through all practice problems

O Understand the difference between similar concepts (lists vs tuples, = vs ==)
O Get a good night’s sleep

6.2 During the Exam

[0 Read each question carefully

(] Trace through code step by step

[0 Double-check your answers

[0 Manage your time (about 3 minutes per question)
[0 If stuck, move on and come back

6.3 Key Formulas to Remember

¢ Range function: range(start, stop, step)

e String slicing: string[start:end:step]

¢ List comprehension: [expression for item in iterable if condition]
e F-string format: £f"Text {variable} more text"

14

Good luck on your midterm! Remember, understanding the concepts is more
important than memorizing syntax. Focus on why things work the way they do,
and you will be fine!

15

	Overview of Midterm
	Exam Format
	Study Tips

	Key Concepts by Topic
	1. Python Literals and Data Types
	2. Variables and Operators
	3. Conditionals (if/elif/else)
	4. Loops (for and while)
	5. Strings and String Operations
	6. Lists
	7. Tuples
	8. Dictionaries
	9. Sets

	Algorithm Concepts
	Exhaustive Enumeration
	Newton's Method

	Sample Practice Problems
	Code Tracing Practice

	Common Mistakes to Avoid
	Syntax Errors
	Logic Errors
	String/List Confusion

	Final Exam Preparation Checklist
	Before the Exam
	During the Exam
	Key Formulas to Remember

