
Chapter 5: STRUCTURED TYPES AND
MUTABILITY

Python Fundamentals: Data Structures & Operations

CS 101 - Fall 2025

On For Today

Today’s Journey: Python Data Structures & Operations

Let’s explore some essential Python concepts!
Topics covered in today’s discussion:

• � Tuples - Immutable ordered collections
• � Ranges and Iterables - Efficient number sequences

• � List Mutability - Dynamic, changeable collections
• � List Cloning - Creating independent copies safely

Also On For Today

Continued …

• � List Comprehensions - Elegant one-line list creation
• � Nested Lists - Lists within lists for complex data
• � 2D Lists - Grid-based data structures (matrices, game boards)
• � Higher-Order Operations - map() and filter() functions
• � Sequence Types - Strings, Tuples, Ranges, and Lists comparison
• � Sets - Unique collections with mathematical operations

� Ready to master Python’s most powerful data structures! �

1

Tuples: The Unchangeable Twins � �

Definition

Tuples are ordered collections of items that are immutable (cannot be changed after
creation). Think of them as containers that are sealed shut!

Typical Use Case: Storing coordinates, RGB color values, or any data that shouldn’t
change

���

Tuples: Code Example

Example

Creating tuples
coordinates = (10, 20)
rgb_color = (255, 128, 0) # Orange color
student_info = ("Alice", 20, "Computer Science")

Accessing elements
print(f"X coordinate: {coordinates[0]}") # Output: 10
print(f"Student name: {student_info[0]}") # Output: Alice

Why this works: Tuples use parentheses and are perfect when you need data that won’t
change, like a point on a map!

Tuples: Concatenation, indexing, and slicing

Example

Like strings, tuples can be concatenated, indexed, and sliced.
t1 = (1, "two", 3)
t2 = (t1, 3.25) # Note, we include t1 here!
print(f" t2 --> {t2}")
print(f" (t1 + t2) --> {(t1 + t2)}")
print(f" (t1 + t2)[3] --> {(t1 + t2)[3]}")
print(f" (t1 + t2)[2:5] --> {(t1 + t2)[2:5]}")

2

Like strings, tuples can be concatenated, indexed, and sliced.
t1 = (1, "two", 3)
t2 = (t1, 3.25) # Note, we include t1 here!
print(f" t2 --> {t2}")
print(f" (t1 + t2) --> {(t1 + t2)}")
print(f" (t1 + t2)[3] --> {(t1 + t2)[3]}")
print(f" (t1 + t2)[2:5] --> {(t1 + t2)[2:5]}")

t2 --> ((1, 'two', 3), 3.25)
(t1 + t2) --> (1, 'two', 3, (1, 'two', 3), 3.25)
(t1 + t2)[3] --> (1, 'two', 3)
(t1 + t2)[2:5] --> (3, (1, 'two', 3), 3.25)

Ranges and Iterables

Definition

Ranges generate sequences of numbers, while iterables are objects you can loop through
one item at a time.

Typical Use Case: Creating number sequences for loops, generating test data, or creating
patterns

���

Ranges: Code Example

Example: Different range patterns

numbers = range(5) # 0, 1, 2, 3, 4
evens = range(2, 11, 2) # 2, 4, 6, 8, 10
countdown = range(10, 0, -1) # 10, 9, 8, ..., 1

Using range() in for-loops
for i in range(3):

print(f"Round {i + 1}!")

for i in countdown: print(i)

3

Why this works: Ranges are memory-efficient and perfect for creating predictable number
sequences!

Lists and Mutability

Definition

Lists are ordered, mutable collections that can store different types of data and can be
modified after creation.

Typical Use Case: Storing shopping lists, student grades, or any collection that needs to
grow or change

���

Lists: Code Example

Example

Creating and modifying lists
fruits = ["apple", "banana", "orange"]
print(f"Original: {fruits}")

Adding items
fruits.append("grape")
fruits.insert(1, "mango")
print(f"After adding: {fruits}")

Why this works: Lists are flexible containers that can grow, shrink, and change - perfect for
dynamic data!

Cloning Lists

Definition

Cloning lists means creating independent copies so changes to one don’t affect the other.

Typical Use Case: Backing up data before modifications, creating templates, or parallel
processing

4

� � ��

List Cloning: The Wrong Way �

Dangerous Example

original = [1, 2, 3, 4, 5]

Wrong way (creates reference, not copy)
not_a_copy = original
not_a_copy.append(6)
print(f"Original changed too! {original}")
Output: [1, 2, 3, 4, 5, 6] - Oops!

List Cloning: The Right Way �

Safe Examples

original = [1, 2, 3, 4, 5]

Right ways to clone
copy1 = original.copy()
copy2 = original[:]
copy3 = list(original)

copy1.append(7)
print(f"Original safe: {original}") # [1, 2, 3, 4, 5]
print(f"Copy modified: {copy1}") # [1, 2, 3, 4, 5, 7]

Why this works: Proper cloning creates independent lists, preventing unwanted side ef-
fects!

5

Lists: Another Cloning Example

Clones

L1 = [1,2,3]
print(f"L1 --> {L1}")
L2 = L1
print(f" L2 is copy of L1 --> {L2}")

L1.append("100") # Modify L1
print(f"L1 with appended value--> {L1}")
print(f" L2 is copy of L1 --> {L2}")
L2.append("2000") # Modify L2
print(f"Appending to L2 modifies L1 = {L2}")

L1 = [1,2,3]
print(f"L1 --> {L1}")
L2 = L1
print(f" L2 is copy of L1 --> {L2}")

L1.append("100") # Modify L1
print(f"L1 with appended value--> {L1}")
print(f" L2 is copy of L1 --> {L2}")
L2.append("2000") # Modify L2
print(f"Appending to L2 modifies L1 = {L2}")

L1 --> [1, 2, 3]
L2 is copy of L1 --> [1, 2, 3]
L1 with appended value--> [1, 2, 3, '100']
L2 is copy of L1 --> [1, 2, 3, '100']
Appending to L2 modifies L1 = [1, 2, 3, '100', '2000']

List Comprehensions

Definition

List comprehensions provide a concise way to create lists using a single line of code
with optional conditions.

6

Typical Use Case: Transforming data, filtering lists, or creating mathematical sequences
efficiently

���

List Comprehensions: Traditional vs Modern

Comparison

Traditional way
squares = []
for x in range(10):

squares.append(x**2)

List comprehension way - much cleaner!
squares = [x**2 for x in range(10)]
print(squares) # [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

List Comprehensions: With Conditions

Advanced Examples

With conditions
even_squares = [x**2 for x in range(10) if x % 2 == 0]
print(even_squares) # [0, 4, 16, 36, 64]

String processing
words = ["hello", "world", "python", "rocks"]
caps = [word.upper() for word in words if len(word) > 4]
print(caps) # ['HELLO', 'WORLD', 'PYTHON', 'ROCKS']

Why this works: List comprehensions are Pythonic, readable, and often faster than tradi-
tional loops!

7

Lists to Make Tuples

Cartesian Formatting

list1 = [1, 2, 3]
list2 = ['a', 'b']

Create a list of tuples combining elements from list1 and list2
combined_list = [(x, y) for x in list1 for y in list2]
print(combined_list)

list1 = [1, 2, 3]
list2 = ['a', 'b']

Create a list of tuples combining elements from list1 and list2
combined_list = [(x, y) for x in list1 for y in list2]
print(combined_list)

[(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b'), (3, 'a'), (3, 'b')]

Nested Lists

Definition

Nested lists are lists that contain other lists as elements, creating multi-dimensional
data structures.

Typical Use Case: Storing hierarchical data, representing matrices, or organizing complex
information

�� �

8

Nested Lists: Code Example

Example

Creating nested lists
shopping_lists = [

["apples", "bananas", "oranges"], # Fruits
["carrots", "broccoli", "spinach"], # Vegetables
["chicken", "beef", "fish"] # Proteins

]

Accessing nested elements
print(f"First fruit: {shopping_lists[0][0]}") # apples
print(f"Second vegetable: {shopping_lists[1][1]}") # broccoli

Why this works: Nested lists let us organize related data in logical groups, like folders in a
filing cabinet!

2D Lists

Definition

2D lists are special nested lists arranged in rows and columns, like a spreadsheet or
game board.

Typical Use Case: Representing game boards, matrices, pixel data, or any grid-based infor-
mation

���

2D Lists: Tic-Tac-Toe Example

9

Example

Creating a 3x3 tic-tac-toe board
board = [

[' ', ' ', ' '],
[' ', ' ', ' '],
[' ', ' ', ' ']

]
Making moves
board[0][0] = 'X' # Top-left
board[1][1] = 'O' # Center
board[2][2] = 'X' # Bottom-right

Why this works: 2D lists give us row[column] access, perfect for grid-based data and
games!

Higher-Order Functions

Definition

Higher-order operations are built-in functions like map(), filter(), and reduce()
that work on entire collections.

Typical Use Case: Processing large datasets, functional programming patterns, and others

���

Higher-Order: map() and filter()

10

Example

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

map() - apply function to all elements
squares = list(map(lambda x: x**2, numbers))
print(f"Squares: {squares}")
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

filter() - keep elements that meet condition
evens = list(filter(lambda x: x % 2 == 0, numbers))
print(f"Evens: {evens}") # [2, 4, 6, 8, 10]

Why this works: Higher-order functions let us process entire collections efficiently with
functional programming!

Higher Order Functions

Function As Parameters

Add print statements to see what is happening in the code.

def apply_to_each(L,f):
""" Assume L is a list, F is a function
Mutats L by replacing each element, e, of L by f(e)"""
for i in range(len(L)):

print(f" position : {i}L[i] is now : {L[i]}")
L[i] = f(L[i])

L = [1, -2, 3.33, -5]
print(f"1. L = {L}")
print("Apply ABS() to each element of L")
apply_to_each(L,abs)
print(f"2. L = {L}")
apply_to_each(L,int)
print(f"3. L = {L}")
apply_to_each(L,float)
print(f"4. L = {L}")
print(f"Apply squaring to each element of L : {L}")
apply_to_each(L, lambda x: x**2)
print(f"5. L = {L}")

11

def apply_to_each(L,f):
""" Assume L is a list, F is a function
Mutats L by replacing each element, e, of L by f(e)"""
for i in range(len(L)):

print(f" position : {i}L[i] is now : {L[i]}")
L[i] = f(L[i])

L = [1, -2, 3.33, -5]
print(f"1. L = {L}")
print("Apply ABS() to each element of L")
apply_to_each(L,abs)
print(f"2. L = {L}")
apply_to_each(L,int)
print(f"3. L = {L}")
apply_to_each(L,float)
print(f"4. L = {L}")
print(f"Apply squaring to each element of L : {L}")
apply_to_each(L, lambda x: x**2)
print(f"5. L = {L}")

1. L = [1, -2, 3.33, -5]
Apply ABS() to each element of L
position : 0L[i] is now : 1
position : 1L[i] is now : -2
position : 2L[i] is now : 3.33
position : 3L[i] is now : -5
2. L = [1, 2, 3.33, 5]
position : 0L[i] is now : 1
position : 1L[i] is now : 2
position : 2L[i] is now : 3.33
position : 3L[i] is now : 5
3. L = [1, 2, 3, 5]
position : 0L[i] is now : 1
position : 1L[i] is now : 2
position : 2L[i] is now : 3
position : 3L[i] is now : 5
4. L = [1.0, 2.0, 3.0, 5.0]
Apply squaring to each element of L : [1.0, 2.0, 3.0, 5.0]
position : 0L[i] is now : 1.0
position : 1L[i] is now : 2.0
position : 2L[i] is now : 3.0

12

position : 3L[i] is now : 5.0
5. L = [1.0, 4.0, 9.0, 25.0]

The function apply_to_each() is called higher-order because it has an argument that is itself
a function.

Sequence Types

Definition

Strings, Tuples, Ranges, and Lists are all sequence types that share common
operations but have different characteristics and use cases.

Typical Use Case: Understanding when to use each type for optimal performance and code
clarity

� � � ���

Sequence Types: Common Operations

Example

Common operations across sequence types
text = "Hello"
numbers_tuple = (1, 2, 3, 4, 5)
numbers_range = range(1, 6)
numbers_list = [1, 2, 3, 4, 5]

Indexing works on all
print(f"String[0]: {text[0]}") # H
print(f"Tuple[1]: {numbers_tuple[1]}") # 2
print(f"List[2]: {numbers_list[2]}") # 3

13

Sequence Types: Key Differences

Mutability Matters!

Slicing works on all
print(f"String slice: {text[1:4]}") # ell
print(f"List slice: {numbers_list[1:4]}") # [2, 3, 4]

But mutability differs!
text[0] = 'h' # Error! Strings are immutable
numbers_tuple[0] = 0 # Error! Tuples are immutable
numbers_list[0] = 0 # Works! Lists are mutable

Why this works: All sequences share similar operations, but mutability determines which
operations are allowed!

Sets

Definition

Sets are unordered collections of unique elements. No duplicates allowed!

Typical Use Case: Removing duplicates, finding common elements, or checking membership
quickly

���

Sets: Creating and Basic Operations

14

Example

Creating sets
colors1 = {"red", "green", "blue", "red"} # Duplicate "red" ignored
colors2 = {"blue", "yellow", "purple"}
numbers = set([1, 2, 2, 3, 3, 3, 4]) # From list

print(f"Colors1: {colors1}") # {'red', 'green', 'blue'}
print(f"Numbers: {numbers}") # {1, 2, 3, 4}

colors1.add("purple")
print(f"Add purple to Colors1: {colors1}") # {'red', 'green', 'blue', 'purple'}
colors1.add("purple")
print(f"Add purple to Colors1 (again): {colors1}") # {'red', 'green', 'blue', 'purple'}

Output:

Creating sets
colors1 = {"red", "green", "blue", "red"} # Duplicate "red" ignored
colors2 = {"blue", "yellow", "purple"}
numbers = set([1, 2, 2, 3, 3, 3, 4]) # From list

print(f"Colors1: {colors1}") # {'red', 'green', 'blue'}
print(f"Numbers: {numbers}") # {1, 2, 3, 4}

colors1.add("purple")
print(f"Add purple to Colors1: {colors1}") # {'red', 'green', 'blue', 'purple'}
colors1.add("purple")
print(f"Add purple to Colors1 (again): {colors1}") # {'red', 'green', 'blue', 'purple'}

Colors1: {'red', 'green', 'blue'}
Numbers: {1, 2, 3, 4}
Add purple to Colors1: {'purple', 'red', 'green', 'blue'}
Add purple to Colors1 (again): {'purple', 'red', 'green', 'blue'}

15

Sets: Mathematical Operations

Set Operations

Creating sets
colors1 = {"red", "green", "blue", "red"} # Duplicate "red" ignored
colors2 = {"blue", "yellow", "purple"}
Set operations
common = colors1 & colors2 # Intersection
all_colors = colors1 | colors2 # Union
unique_to_1 = colors1 - colors2 # Difference

print(f"Common colors: {common}") # {'blue'}
print(f"All colors: {all_colors}")
{'red', 'green', 'blue', 'yellow', 'purple'}

Fast membership testing
print("red" in colors1) # True - very fast!

Output:

Creating sets
colors1 = {"red", "green", "blue", "red"} # Duplicate "red" ignored
colors2 = {"blue", "yellow", "purple"}
Set operations
common = colors1 & colors2 # Intersection
all_colors = colors1 | colors2 # Union
unique_to_1 = colors1 - colors2 # Difference

print(f"Common colors: {common}") # {'blue'}
print(f"All colors: {all_colors}")
{'red', 'green', 'blue', 'yellow', 'purple'}

Fast membership testing
print("red" in colors1) # True - very fast!

Common colors: {'blue'}
All colors: {'red', 'blue', 'purple', 'yellow', 'green'}
True

Why this works: Sets automatically handle uniqueness and provide super-fast lookups and
mathematical operations!

16

	On For Today
	Also On For Today
	Tuples: The Unchangeable Twins 👯‍♀️
	Tuples: Code Example
	Tuples: Concatenation, indexing, and slicing

	Ranges and Iterables
	Ranges: Code Example

	Lists and Mutability
	Lists: Code Example

	Cloning Lists
	List Cloning: The Wrong Way ❌
	List Cloning: The Right Way ✅
	Lists: Another Cloning Example

	List Comprehensions
	List Comprehensions: Traditional vs Modern
	List Comprehensions: With Conditions
	Lists to Make Tuples

	Nested Lists
	Nested Lists: Code Example

	2D Lists
	2D Lists: Tic-Tac-Toe Example

	Higher-Order Functions
	Higher-Order: map() and filter()
	Higher Order Functions

	Sequence Types
	Sequence Types: Common Operations
	Sequence Types: Key Differences

	Sets
	Sets: Creating and Basic Operations
	Sets: Mathematical Operations

