Chapter 5: Lambda Functions

Anonymous Functions in Python

CS 101 - Fall 2025

On For Today

@ Let’s explore Python’s most elegant function syntax!

Topics covered in today’s discussion:

e  What are Lambda Functions? - Anonymous functions explained
e« Basic Lambda Syntax - The foundation you need

e Lambda vs Regular Functions - When to use each

e Lambda with Built-in Functions - map(), filter (), sorted()
e Real-World Applications - Practical uses in data processing

e Best Practices - Writing clean, readable lambda expressions




Get Ready for the Lambda Functions!

What Are Lambda Functions?

Definition

Lambda functions are small, anonymous functions that can have any number of argu-
ments but can only have one expression. They’re perfect for short, simple operations!

Think of them as: Mathematical functions like f (x) = x? + 1 - simple, direct, and to the
point!



Any Limitations to Lambda Functions?

! Important
Limitations:

o Lambda functions are restricted to a single expression.

e They cannot contain statements like assignments, if-else, or for loops within their
definition.

e They are primarily used for simple, short operations.

e For more complex logic, a named function is more appropriate;

— def myFunction():

Lambda Functions: The Basics

Basic Syntax
# Lambda syntax: lambda arguments: expression

# Regular function
def square(x):
return x * X

# Lambda equivalent
square_lambda = lambda x: x * x

# Using both
print (square(5)) # Output: 25
print (square_lambda(5)) # Output: 25

Key Point: Lambda functions are expressions, not statements - they return a value immedi-
ately!



Lambda Functions: Multiple Arguments

More Examples

# Multiple arguments
add = lambda x, y: x + ¥y
multiply = lambda x, y, z: X * y * z

# With default arguments
greet = lambda name="World": f"Hello, {namel}!"

print(add(3, 5))

print (multiply(2, 3, 4))
print (greet())
print(greet("Alice"))

Output: 8
Output: 24
Output: Hello, World!
Output: Hello, Alice!
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Why this works: Lambda functions can handle multiple parameters just like regular func-
tions!

Quick Challenge #1 (2 minutes)

Your Turn: Basic Lambda Practice

Challenge: Create lambda functions for these operations:

1. A lambda that calculates the area of a circle: * r?

2. A lambda that converts Fahrenheit to Celsius: (f - 32) * 5/9
3. A lambda that finds the maximum max () of three numbers

4. A lambda that finds the minimum min() of three numbers

Starter Code:



import math

# Your lambda functions here

circle_area = lambda r: # Complete this

fahrenheit_to_celsius = lambda f: # Complete this
lambda a, b, c: # Complete this

lambda a, b, c: # Complete this

max_three

min_three

# Test your functions
print(circle_area(5))

print (fahrenheit_to_celsius(68))
print (max_three(10, 20, 15))
print (min_three(10, 20, 15))

Challenge #1 Solutions



Solutions

import math

# Solution 1: Circle area
circle_area = lambda r: math.pi * r * r

# Solution 2: Fahrenheit to Celsius
fahrenheit _to_celsius = lambda f: (f - 32) * 5/9

# Solution 3: Maximum of three numbers
max_three = lambda a, b, c: max(a, max(b, c))
# Alternative: max_three = lambda a, b, c: max(a, b, c)

# Solution 4: Minimum of three numbers (in a list)
myVals = [10, 20, 15]

min_three = lambda thisValue: min(thisValue)

print (myVals)

print (min_three(myVals))

# Test results

print(f"Circle area (r=5): {circle_area(5):.2f}") # 78.54
print (£"68°F in Celsius: {fahrenheit_to_celsius(68)}") # 20.0
print (f"Max of 10,20,15: {max_three(10, 20, 15)}") # 20
print(£"Min of 10,20,15: {min_three(10, 20, 15)}") # 10

Meet Your New Best Friends!

Essential Built-in Functions

map (function, iterable)
Applies a function to every item in a list/iterable
Think: “Transform every item”
filter(function, iterable)
Keeps only items where function returns True
Think: “Keep only items that pass the test”
sorted(iterable, key=function)
Returns a new sorted list using function for comparison
Think: “Arrange items by custom criteria”
list (iterable)
Converts any iterable (map/filter results) into a list




Think: “Make it a proper list I can print/use”

Pro Tip: map() and filter () return special objects - use 1ist () to see the actual results!

Lambda vs Regular Functions

When to Use Each

Lambda: For simple, one-line operations that you’ll use briefly
Regular Functions: For complex logic, multiple statements, or reusable code

Rule of thumb: If you can’t explain what the function does in one sentence, use a regular
function; e.g., def myFunction():

Lambda vs Regular: Comparison

Side-by-Side Comparison

# Good use of lambda - simple, clear
numbers = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, numbers))

# Bad use of lambda - too complex
complex_lambda = lambda x: x**2 if x > 0 else -x**2 if x < 0 else O

# Better as regular function
def process_number(x):
if x > 0O:
return x**2
elif x < O:
return -x**2
else:
return O

Remember: Lambda functions should be simple and readable!



Lambda with Built-in Functions

The Power Combination

Lambda functions really shine when used with Python’s built-in functions like map(),
filter(), and sorted()!

Why this matters: These combinations let you process data efficiently with minimal code

Lambda with map()

Transform All Elements

# Transform all elements in a list
numbers = [1, 2, 3, 4, 5]
names = ["alice", "bob", "charlie"]

# Square all numbers
squared = list(map(lambda x: x**2, numbers))
print (f"Squared: {squared}") # [1, 4, 9, 16, 25]

# Capitalize all names
capitalized = list(map(lambda name: name.title(), names))
print (f"Capitalized: {capitalizedl}") # ['Alice', 'Bob', 'Charlie']

# Multiple lists

numsl = [1, 2, 3]

nums2 = [4, 5, 6]

sums = list(map(lambda x, y: x + y, numsl, nums2))
print (f"Sums: {sums}") # [5, 7, 9]




Lambda with filter()

Keep Only What You Want

# Filter elements based on condition
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
words = ["apple", "banana", "cherry", "date", "elderberry"]

# Keep only even numbers
evens = list(filter(lambda x: x % 2 == 0, numbers))
print (f"Evens: {evensl}") # [2, 4, 6, 8, 10]

# Keep only long words
long_words = list(filter(lambda word: len(word) > 5, words))
print(f"Long words: {long_words}") # ['banana', 'cherry', 'elderberry']

# Keep positive numbers

mixed = [-3, -1, 0, 2, 5, -7, 9]

positives = list(filter(lambda x: x > 0, mixed))
print (f"Positives: {positives}") # [2, 5, 9]

Lambda with sorted()



Custom Sorting Logic

# Sort with custom criteria

students = [
{"name": "Alice", "grade": 85},
{"name": "Bob", "grade": 92},
{"name": "Charlie", "grade": 78},
{"name": "Diana", "grade": 96}

words = ["banana", "pie", "Washington", "book"]

# Sort students by grade (descending)
by_grade = sorted(students, key=lambda student: student["grade"], reverse=True)
print("Top student:", by_grade[0] ["name"]) # Diana

# Sort words by length
by_length = sorted(words, key=lambda word: len(word))
print (f"By length: {by_lengthl}") # ['pie', 'book', 'banana', 'Washington']

# Sort words by last letter
by_last_letter = sorted(words, key=lambda word: word[-1])
print (f"By last letter: {by_last_letter}") # ['banana', 'pie', 'book', 'Washington']

Quick Challenge #2 (3 minutes)

Your Turn: Lambda with Built-ins

Challenge: Use lambda functions with map(), filter (), and sorted():
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# Given data
temperatures_f = [32, 68, 86, 104, 212] # Fahrenheit
prices = [10.99, 23.45, 5.67, 45.00, 12.34]
products = [
{"name": "laptop", "price": 999.99, "rating": 4.5},

{"name": "mouse", "price": 25.50, "rating": 4.2},
{"name": "keyboard", "price": 75.00, "rating": 4.8},
{"name": "monitor", "price": 299.99, "rating": 4.3}

# Your tasks:

# 1. Convert temperatures to Celsius using map()

# 2. Find prices under $20 using filter()

# 3. Sort products by rating (highest first) using sorted()

Challenge #2 Solutions

Solutions

# 1. Convert temperatures to Celsius

celsius = list(map(lambda f: (f - 32) * 5/9, temperatures_f))
print (f"Celsius: {[round(temp, 1) for temp in celsius]l}")

# [0.0, 20.0, 30.0, 40.0, 100.0]

# 2. Find prices under $20
cheap_prices = list(filter(lambda price: price < 20, prices))
print (f"Under $20: {cheap_prices}") # [10.99, 5.67, 12.34]

# 3. Sort products by rating (highest first)
by_rating = sorted(products, key=lambda p: p["rating"], reverse=True)
print("Best rated:", by_rating[0] ["name"]) # keyboard
for product in by_rating:
print (f"{product['name']}: {product['rating']}")
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Real-World Lambda Applications

Practical Uses

Lambda functions are everywhere in real Python code! Let’s see some practical applica-
tions you’ll encounter.

Common scenarios: Data processing, web development, GUI programming, and scientific
computing

More Helpful Functions!

Additional Built-in Functions

sum(iterable)

Adds up all numbers in a list/iterable

Think: “Give me the total of all these numbers”
len(iterable)

Returns the count of items in a collection

Think: “How many items are there?”
max(iterable, key=function)

Finds the largest item (optionally using key function)

Think: “Which item is the biggest/best?”
set(iterable)

Creates a collection with only unique items

Think: “Remove all duplicates”

Fun Fact: These functions work great with the results from map() and filter()!

Real-World Example

1 Note

Sales Data Processing
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# Sales data from a CSV or database
sales_data = [

{"product": "Laptop", "price": 999.99, "quantity": 2, "discount": 0.1},
{"product": "Mouse", "price": 25.50, "quantity": 5,
{"product": "Keyboard", "price": 75.00, "quantity":
{"product": "Monitor", "price": 299.99, "quantity":

# Calculate total revenue with discounts

total_revenue = sum(map(
lambda sale: sale["price"] * sale["quantity"] * (1
sales_data

)
print(£f"Total Revenue: ${total_revenue:.2f}")

# Find high-value sales (over $200 after discount)
high value = list(filter(
lambda sale: sale["price"] * sale["quantity"] * (1
sales_data

)
print (f"High-value sales: {len(high_value)l}")

Output:
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"discount": 0.0},
3, "discount": 0.05}
1, "discount": 0.15}

- sale["discount"]),

- sale["discount"]) >

200,



# Sales data from a CSV or database
sales_data = [
{"product": "Laptop", "price": 999.99, "quantity":

# Calculate total revenue with discounts

total_revenue = sum(map(
lambda sale: sale["price"] * salel["quantity"] * (1
sales_data

)
print(£f"Total Revenue: ${total_revenue:.2f}")

# Find high-value sales (over $200 after discount)
high value = list(filter(
lambda sale: sale["price"] * sale["quantity"] * (1
sales_data

)
print (f"High-value sales: {len(high_value)}")

Total Revenue: $2396.22
High-value sales: 3

{"product": "Mouse", "price": 25.50, "quantity": 5,
{"product": "Keyboard", "price": 75.00, "quantity":
{"product": "Monitor", "price": 299.99, "quantity":

2, "discount": 0.1},
"discount": 0.0},
3, "discount": 0.05}
1, "discount": 0.15}

- sale["discount"]),

- sale["discount"]) >

Real-World Example

i Note

Web Development
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# User registration data

users = [
{"email": "alice@email.com", "age": 25, "active": True},
{"email": "bob@email.com", "age": 17, "active": Falsel,
{"email": "charlie@email.com", "age": 30, "active": True}l,
{"email": "diana@email.com", "age": 16, "active": True}

]

# Get active adult users

active adults = list(filter(
lambda user: user["active"] and user["age"] >= 18,
users

))

# Extract just the email addresses

adult_emails = list(map(lambda user: user["email"], active_adults))
print("Adult user emails:", adult_emails)

# Sort users by age

by_age = sorted(users, key=lambda user: user["age'"])
print("Youngest user:", by_agel[0] ["email"])

Output:
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# User registration data

users = [
{"email": "alice@email.com", "age": 25, "active": True},
{"email": "bob@email.com", "age": 17, "active": Falsel,
{"email": "charlie@email.com", "age": 30, "active": True}l,
{"email": "diana@email.com", "age": 16, "active": True}

]

# Get active adult users

active adults = list(filter(
lambda user: user["active"] and user["age"] >= 18,
users

))

# Extract just the email addresses
adult_emails = list(map(lambda user: user["email"], active_adults))
print ("Adult user emails:", adult_emails)

# Sort users by age
by_age = sorted(users, key=lambda user: user["age"])
print ("Youngest user:", by_age[0] ["email"])

Adult user emails: ['alice@email.com', 'charlie@email.com']
Youngest user: diana@email.com

Real-World Example

1 Note

Analytic Computing
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import math

# Experimental data points

data_points = [
{"x": 1, "y": 2.1, "error": 0.1},
{"x": 2, "y": 4.2, "error": 0.2},
{"x": 3, "y": 5.8, "error": 0.15},
{"x": 4, "y": 8.1, "error": 0.25}

# Calculate distances from origin

distances = list(map(
lambda point: math.sqrt(point["x"]**2 + point["y"]*x*2),
data_points

))

# Filter points with low error (high precision)
precise_points = list(filter(
lambda point: point["error"] < 0.2,
data_points

)

# Sort by significance (y/error ratio)
by_significance = sorted(
data_points,
key=lambda point: point["y"] / point["error"],
reverse=True
)

print("Most significant point:", by_significancel[0])

Output:
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import math

# Experimental data points

data_points = [
{"x": 1, "y": 2.1, "error": 0.1},
{"x": 2, "y": 4.2, "error": 0.2},
{"x": 3, "y": 5.8, "error": 0.15},
{"x": 4, "y": 8.1, "error": 0.25}

# Calculate distances from origin

distances = list(map(
lambda point: math.sqrt(point["x"]**2 + point["y"]*%*2),
data_points

))

# Filter points with low error (high precision)
precise_points = list(filter(
lambda point: point["error"] < 0.2,
data_points

)

# Sort by significance (y/error ratio)
by_significance = sorted(
data_points,
key=lambda point: point["y"] / point["error"],
reverse=True
)

print ("Most significant point:", by_significance[0])

Most significant point: {'x': 3, 'y': 5.8, 'error': 0.15}

Real-World Example

1 Note

GUI (Button Click) Event Handling

18



# Simulating GUI framework (like tkinter)
class Button:
def __init__(self, text, command=None) :
self.text = text
self.command = command

def click(self):
if self.command:
self.command()

# Creating buttons with lambda commands

buttons = [
Button("Save", lambda: print("File saved!")),
Button("Load", lambda: print("File loaded!")),
Button("Exit", lambda: print("Goodbye!"))

# Dynamic button creation with different actions
for i in range(3):
button = Button(f"Button {i+1}", lambda num=i:
buttons.append (button)

# Simulate button clicks
for button in buttons:

button.click()

Output:
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print (£f"Clicked button {n

um+1}"))



# Simulating GUI framework (like tkinter)
class Button:

def __init__(self, text, command=None) :
self.text = text
self.command = command
def click(self):
if self.command:

self.command()

# Creating buttons with lambda commands

buttons = [
Button("Save", lambda:
Button("Load", lambda:
Button("Exit", lambda:

print("File saved!")),
print("File loaded!")),
print ("Goodbye!"))

# Dynamic button creation with different actions
for i in range(3):
button = Button(f"Button {i+1}", lambda num=i:

buttons.append (button)

# Simulate button clicks
for button in buttons:
button.click()

File saved!

File loaded!
Goodbye!

Clicked button 1
Clicked button 2
Clicked button 3

print (£f"Clicked button {n

Note: We will talk about classes soon!
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Challenge #3: Real-World Practice (5 minutes)

Your Turn: E-commerce Data Processing

You’re working for an online store. Process this customer data:

customers = [
{"name": "Alice", "age": 28, "purchases": [45.99, 23.50, 67.25], "member": True}l,
{"name": "Bob", "age": 35, "purchases": [12.99, 89.00], "member": False},
{"name": "Charlie", "age": 22, "purchases": [156.00, 45.50, 23.25, 78.90], "member":

{"name": "Diana", "age": 45, "purchases": [234.50], "member": True}
]
# Your tasks using lambda functiomns:
# 1. Calculate total spent by each customer
# 2. Find VIP customers (members who spent > $100)
# 3. Sort customers by average purchase amount
# 4. Get names of customers under 30

Challenge #3 Solutions
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E-commerce Solutions

# 1. Calculate total spent by each customer
customers_with_totals = list(map(
lambda c: {**c, "total_spent": sum(c["purchases"])},
customers

))

# 2. Find VIP customers (members who spent > $100)
vip_customers = list(filter(
lambda c: c["member"] and sum(c["purchases"]) > 100,
customers

))

print ("VIP customers:", [c["name"] for c in vip_customers])

# 3. Sort customers by average purchase amount
by_avg_purchase = sorted(
customers,
key=lambda c: sum(c["purchases"]) / len(c["purchases"]),
reverse=True
)
print ("Highest avg purchase:", by_avg_purchase[0] ["name"])

# 4. Get names of customers under 30
young_customers = list(map(

lambda c: c["name"],

filter(lambda c: c["age"] < 30, customers)
)

print("Young customers:", young_customers)

Lambda Best Practices

Writing Clean Lambda Functions

Follow these guidelines to write maintainable and readable lambda expressions.

Remember: Code is read more often than it’s written - prioritize clarity!
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Lambda Best Practices: Do’s and Don’ts

Guidelines

DO:

# Simple, clear operations

numbers = [1, 2, 3, 4, 5]

squared = list(map(lambda x: x**2, numbers))

evens = list(filter(lambda x: x % 2 == 0, numbers))

# Short data transformations
users = [{"name": "Alice", "age": 25}]
names = list(map(lambda u: ul["name"], users))

DO NOT:

# Too complex for lambda
complex_func = lambda x: x**2 if x > 0 else abs(x) if x < 0 else "zero"

# Multiple statements (impossible in lambda anyway)
# This won't work:
# bad_lambda = lambda x: print(x); return x**2

Lambda Limitations and Alternatives
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When Lambda Is not Enough

# Lambda cannot do multiple statements
# Need regular function for this:
def process_grade(score):
print (f"Processing score: {score}") # Side effect
if score >= 90:
return "A"
elif score >= 80:
return "B"
else:
return "C"

# Lambda for simple conditions
grade_simple = lambda score: "Pass" if score >= 60 else "Fail"

# Lambda cannot include assignments

# Need regular function:

def calculate_with_logging(x):
result = x**2 + 2xx + 1 # Assignment
print(f"Calculated: {result}")
return result

Summary: Lambda Functions Mastery

@ What You've Learned Today

Core Concepts: * Lambda functions are anonymous, single-expression functions *
Perfect for simple operations and data transformations * Excellent with map(), filter (),
and sorted()

Practical Skills: * Data processing and filtering * Custom sorting logic * Functional
programming patterns * Real-world application scenarios

Best Practices: * Keep lambdas simple and readable * Use regular functions for
complex logic * Prioritize code clarity over cleverness

Congrats!

Congratulations! You’ve mastered Python’s lambda functions!
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