
Chapter 5: Lambda Functions
Anonymous Functions in Python

CS 101 - Fall 2025

On For Today

Let’s explore Python’s most elegant function syntax!

Topics covered in today’s discussion:

• � What are Lambda Functions? - Anonymous functions explained
• � Basic Lambda Syntax - The foundation you need
• � Lambda vs Regular Functions - When to use each
• � Lambda with Built-in Functions - map(), filter(), sorted()
• � Real-World Applications - Practical uses in data processing
• � Best Practices - Writing clean, readable lambda expressions

1

Get Ready for the Lambda Functions!

What Are Lambda Functions?

Definition

Lambda functions are small, anonymous functions that can have any number of argu-
ments but can only have one expression. They’re perfect for short, simple operations!

Think of them as: Mathematical functions like f(x) = x² + 1 - simple, direct, and to the
point!

���

2

Any Limitations to Lambda Functions?

Important

Limitations:

• Lambda functions are restricted to a single expression.
• They cannot contain statements like assignments, if-else, or for loops within their

definition.
• They are primarily used for simple, short operations.
• For more complex logic, a named function is more appropriate;

– def myFunction():

Lambda Functions: The Basics

Basic Syntax

Lambda syntax: lambda arguments: expression

Regular function
def square(x):

return x * x

Lambda equivalent
square_lambda = lambda x: x * x

Using both
print(square(5)) # Output: 25
print(square_lambda(5)) # Output: 25

Key Point: Lambda functions are expressions, not statements - they return a value immedi-
ately!

3

Lambda Functions: Multiple Arguments

More Examples

Multiple arguments
add = lambda x, y: x + y
multiply = lambda x, y, z: x * y * z

With default arguments
greet = lambda name="World": f"Hello, {name}!"

print(add(3, 5)) # Output: 8
print(multiply(2, 3, 4)) # Output: 24
print(greet()) # Output: Hello, World!
print(greet("Alice")) # Output: Hello, Alice!

Why this works: Lambda functions can handle multiple parameters just like regular func-
tions!

� Quick Challenge #1 (2 minutes)

Your Turn: Basic Lambda Practice

Challenge: Create lambda functions for these operations:

1. A lambda that calculates the area of a circle: � * r²
2. A lambda that converts Fahrenheit to Celsius: (f - 32) * 5/9
3. A lambda that finds the maximum max() of three numbers
4. A lambda that finds the minimum min() of three numbers

Starter Code:

4

import math

Your lambda functions here
circle_area = lambda r: # Complete this
fahrenheit_to_celsius = lambda f: # Complete this
max_three = lambda a, b, c: # Complete this
min_three = lambda a, b, c: # Complete this

Test your functions
print(circle_area(5))
print(fahrenheit_to_celsius(68))
print(max_three(10, 20, 15))
print(min_three(10, 20, 15))

Challenge #1 Solutions

5

Solutions

import math

Solution 1: Circle area
circle_area = lambda r: math.pi * r * r

Solution 2: Fahrenheit to Celsius
fahrenheit_to_celsius = lambda f: (f - 32) * 5/9

Solution 3: Maximum of three numbers
max_three = lambda a, b, c: max(a, max(b, c))
Alternative: max_three = lambda a, b, c: max(a, b, c)

Solution 4: Minimum of three numbers (in a list)
myVals = [10, 20, 15]
min_three = lambda thisValue: min(thisValue)
print(myVals)
print(min_three(myVals))

Test results
print(f"Circle area (r=5): {circle_area(5):.2f}") # 78.54
print(f"68°F in Celsius: {fahrenheit_to_celsius(68)}") # 20.0
print(f"Max of 10,20,15: {max_three(10, 20, 15)}") # 20
print(f"Min of 10,20,15: {min_three(10, 20, 15)}") # 10

Meet Your New Best Friends! �

Essential Built-in Functions

� map(function, iterable)
Applies a function to every item in a list/iterable
Think: “Transform every item”
� filter(function, iterable)
Keeps only items where function returns True
Think: “Keep only items that pass the test”
� sorted(iterable, key=function)
Returns a new sorted list using function for comparison
Think: “Arrange items by custom criteria”
� list(iterable)
Converts any iterable (map/filter results) into a list

6

Think: “Make it a proper list I can print/use”

Pro Tip: map() and filter() return special objects - use list() to see the actual results!

���

Lambda vs Regular Functions

When to Use Each

Lambda: For simple, one-line operations that you’ll use briefly
Regular Functions: For complex logic, multiple statements, or reusable code

Rule of thumb: If you can’t explain what the function does in one sentence, use a regular
function; e.g., def myFunction():

� ��

Lambda vs Regular: Comparison

Side-by-Side Comparison

� Good use of lambda - simple, clear
numbers = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, numbers))

� Bad use of lambda - too complex
complex_lambda = lambda x: x**2 if x > 0 else -x**2 if x < 0 else 0

� Better as regular function
def process_number(x):

if x > 0:
return x**2

elif x < 0:
return -x**2

else:
return 0

Remember: Lambda functions should be simple and readable!

7

Lambda with Built-in Functions

The Power Combination

Lambda functions really shine when used with Python’s built-in functions like map(),
filter(), and sorted()!

Why this matters: These combinations let you process data efficiently with minimal code

���

Lambda with map()

Transform All Elements

Transform all elements in a list
numbers = [1, 2, 3, 4, 5]
names = ["alice", "bob", "charlie"]

Square all numbers
squared = list(map(lambda x: x**2, numbers))
print(f"Squared: {squared}") # [1, 4, 9, 16, 25]

Capitalize all names
capitalized = list(map(lambda name: name.title(), names))
print(f"Capitalized: {capitalized}") # ['Alice', 'Bob', 'Charlie']

Multiple lists
nums1 = [1, 2, 3]
nums2 = [4, 5, 6]
sums = list(map(lambda x, y: x + y, nums1, nums2))
print(f"Sums: {sums}") # [5, 7, 9]

8

Lambda with filter()

Keep Only What You Want

Filter elements based on condition
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
words = ["apple", "banana", "cherry", "date", "elderberry"]

Keep only even numbers
evens = list(filter(lambda x: x % 2 == 0, numbers))
print(f"Evens: {evens}") # [2, 4, 6, 8, 10]

Keep only long words
long_words = list(filter(lambda word: len(word) > 5, words))
print(f"Long words: {long_words}") # ['banana', 'cherry', 'elderberry']

Keep positive numbers
mixed = [-3, -1, 0, 2, 5, -7, 9]
positives = list(filter(lambda x: x > 0, mixed))
print(f"Positives: {positives}") # [2, 5, 9]

Lambda with sorted()

9

Custom Sorting Logic

Sort with custom criteria
students = [

{"name": "Alice", "grade": 85},
{"name": "Bob", "grade": 92},
{"name": "Charlie", "grade": 78},
{"name": "Diana", "grade": 96}

]

words = ["banana", "pie", "Washington", "book"]

Sort students by grade (descending)
by_grade = sorted(students, key=lambda student: student["grade"], reverse=True)
print("Top student:", by_grade[0]["name"]) # Diana

Sort words by length
by_length = sorted(words, key=lambda word: len(word))
print(f"By length: {by_length}") # ['pie', 'book', 'banana', 'Washington']

Sort words by last letter
by_last_letter = sorted(words, key=lambda word: word[-1])
print(f"By last letter: {by_last_letter}") # ['banana', 'pie', 'book', 'Washington']

� Quick Challenge #2 (3 minutes)

Your Turn: Lambda with Built-ins

Challenge: Use lambda functions with map(), filter(), and sorted():

10

Given data
temperatures_f = [32, 68, 86, 104, 212] # Fahrenheit
prices = [10.99, 23.45, 5.67, 45.00, 12.34]
products = [

{"name": "laptop", "price": 999.99, "rating": 4.5},
{"name": "mouse", "price": 25.50, "rating": 4.2},
{"name": "keyboard", "price": 75.00, "rating": 4.8},
{"name": "monitor", "price": 299.99, "rating": 4.3}

]

Your tasks:
1. Convert temperatures to Celsius using map()
2. Find prices under $20 using filter()
3. Sort products by rating (highest first) using sorted()

Challenge #2 Solutions

Solutions

1. Convert temperatures to Celsius
celsius = list(map(lambda f: (f - 32) * 5/9, temperatures_f))
print(f"Celsius: {[round(temp, 1) for temp in celsius]}")
[0.0, 20.0, 30.0, 40.0, 100.0]

2. Find prices under $20
cheap_prices = list(filter(lambda price: price < 20, prices))
print(f"Under $20: {cheap_prices}") # [10.99, 5.67, 12.34]

3. Sort products by rating (highest first)
by_rating = sorted(products, key=lambda p: p["rating"], reverse=True)
print("Best rated:", by_rating[0]["name"]) # keyboard
for product in by_rating:

print(f"{product['name']}: {product['rating']}")

11

Real-World Lambda Applications

Practical Uses

Lambda functions are everywhere in real Python code! Let’s see some practical applica-
tions you’ll encounter.

Common scenarios: Data processing, web development, GUI programming, and scientific
computing

���

More Helpful Functions! �

Additional Built-in Functions

� sum(iterable)
Adds up all numbers in a list/iterable
Think: “Give me the total of all these numbers”
� len(iterable)
Returns the count of items in a collection
Think: “How many items are there?”
� max(iterable, key=function)
Finds the largest item (optionally using key function)
Think: “Which item is the biggest/best?”
� set(iterable)
Creates a collection with only unique items
Think: “Remove all duplicates”

Fun Fact: These functions work great with the results from map() and filter()!

���

Real-World Example

Note

Sales Data Processing

12

Sales data from a CSV or database
sales_data = [

{"product": "Laptop", "price": 999.99, "quantity": 2, "discount": 0.1},
{"product": "Mouse", "price": 25.50, "quantity": 5, "discount": 0.0},
{"product": "Keyboard", "price": 75.00, "quantity": 3, "discount": 0.05},
{"product": "Monitor", "price": 299.99, "quantity": 1, "discount": 0.15}

]

Calculate total revenue with discounts
total_revenue = sum(map(

lambda sale: sale["price"] * sale["quantity"] * (1 - sale["discount"]),
sales_data

))
print(f"Total Revenue: ${total_revenue:.2f}")

Find high-value sales (over $200 after discount)
high_value = list(filter(

lambda sale: sale["price"] * sale["quantity"] * (1 - sale["discount"]) > 200,
sales_data

))
print(f"High-value sales: {len(high_value)}")

Output:

13

Sales data from a CSV or database
sales_data = [

{"product": "Laptop", "price": 999.99, "quantity": 2, "discount": 0.1},
{"product": "Mouse", "price": 25.50, "quantity": 5, "discount": 0.0},
{"product": "Keyboard", "price": 75.00, "quantity": 3, "discount": 0.05},
{"product": "Monitor", "price": 299.99, "quantity": 1, "discount": 0.15}

]

Calculate total revenue with discounts
total_revenue = sum(map(

lambda sale: sale["price"] * sale["quantity"] * (1 - sale["discount"]),
sales_data

))
print(f"Total Revenue: ${total_revenue:.2f}")

Find high-value sales (over $200 after discount)
high_value = list(filter(

lambda sale: sale["price"] * sale["quantity"] * (1 - sale["discount"]) > 200,
sales_data

))
print(f"High-value sales: {len(high_value)}")

Total Revenue: $2396.22
High-value sales: 3

Real-World Example

Note

Web Development

14

User registration data
users = [

{"email": "alice@email.com", "age": 25, "active": True},
{"email": "bob@email.com", "age": 17, "active": False},
{"email": "charlie@email.com", "age": 30, "active": True},
{"email": "diana@email.com", "age": 16, "active": True}

]

Get active adult users
active_adults = list(filter(

lambda user: user["active"] and user["age"] >= 18,
users

))

Extract just the email addresses
adult_emails = list(map(lambda user: user["email"], active_adults))
print("Adult user emails:", adult_emails)

Sort users by age
by_age = sorted(users, key=lambda user: user["age"])
print("Youngest user:", by_age[0]["email"])

Output:

15

User registration data
users = [

{"email": "alice@email.com", "age": 25, "active": True},
{"email": "bob@email.com", "age": 17, "active": False},
{"email": "charlie@email.com", "age": 30, "active": True},
{"email": "diana@email.com", "age": 16, "active": True}

]

Get active adult users
active_adults = list(filter(

lambda user: user["active"] and user["age"] >= 18,
users

))

Extract just the email addresses
adult_emails = list(map(lambda user: user["email"], active_adults))
print("Adult user emails:", adult_emails)

Sort users by age
by_age = sorted(users, key=lambda user: user["age"])
print("Youngest user:", by_age[0]["email"])

Adult user emails: ['alice@email.com', 'charlie@email.com']
Youngest user: diana@email.com

Real-World Example

Note

Analytic Computing

16

import math

Experimental data points
data_points = [

{"x": 1, "y": 2.1, "error": 0.1},
{"x": 2, "y": 4.2, "error": 0.2},
{"x": 3, "y": 5.8, "error": 0.15},
{"x": 4, "y": 8.1, "error": 0.25}

]

Calculate distances from origin
distances = list(map(

lambda point: math.sqrt(point["x"]**2 + point["y"]**2),
data_points

))

Filter points with low error (high precision)
precise_points = list(filter(

lambda point: point["error"] < 0.2,
data_points

))

Sort by significance (y/error ratio)
by_significance = sorted(

data_points,
key=lambda point: point["y"] / point["error"],
reverse=True

)
print("Most significant point:", by_significance[0])

Output:

17

import math

Experimental data points
data_points = [

{"x": 1, "y": 2.1, "error": 0.1},
{"x": 2, "y": 4.2, "error": 0.2},
{"x": 3, "y": 5.8, "error": 0.15},
{"x": 4, "y": 8.1, "error": 0.25}

]

Calculate distances from origin
distances = list(map(

lambda point: math.sqrt(point["x"]**2 + point["y"]**2),
data_points

))

Filter points with low error (high precision)
precise_points = list(filter(

lambda point: point["error"] < 0.2,
data_points

))

Sort by significance (y/error ratio)
by_significance = sorted(

data_points,
key=lambda point: point["y"] / point["error"],
reverse=True

)
print("Most significant point:", by_significance[0])

Most significant point: {'x': 3, 'y': 5.8, 'error': 0.15}

Real-World Example

Note

GUI (Button Click) Event Handling

18

Simulating GUI framework (like tkinter)
class Button:

def __init__(self, text, command=None):
self.text = text
self.command = command

def click(self):
if self.command:

self.command()

Creating buttons with lambda commands
buttons = [

Button("Save", lambda: print("File saved!")),
Button("Load", lambda: print("File loaded!")),
Button("Exit", lambda: print("Goodbye!"))

]

Dynamic button creation with different actions
for i in range(3):

button = Button(f"Button {i+1}", lambda num=i: print(f"Clicked button {num+1}"))
buttons.append(button)

Simulate button clicks
for button in buttons:

button.click()

Output:

19

Simulating GUI framework (like tkinter)
class Button:

def __init__(self, text, command=None):
self.text = text
self.command = command

def click(self):
if self.command:

self.command()

Creating buttons with lambda commands
buttons = [

Button("Save", lambda: print("File saved!")),
Button("Load", lambda: print("File loaded!")),
Button("Exit", lambda: print("Goodbye!"))

]

Dynamic button creation with different actions
for i in range(3):

button = Button(f"Button {i+1}", lambda num=i: print(f"Clicked button {num+1}"))
buttons.append(button)

Simulate button clicks
for button in buttons:

button.click()

File saved!
File loaded!
Goodbye!
Clicked button 1
Clicked button 2
Clicked button 3

Note: We will talk about classes soon! ��

20

� Challenge #3: Real-World Practice (5 minutes)

Your Turn: E-commerce Data Processing

You’re working for an online store. Process this customer data:

customers = [
{"name": "Alice", "age": 28, "purchases": [45.99, 23.50, 67.25], "member": True},
{"name": "Bob", "age": 35, "purchases": [12.99, 89.00], "member": False},
{"name": "Charlie", "age": 22, "purchases": [156.00, 45.50, 23.25, 78.90], "member": True},
{"name": "Diana", "age": 45, "purchases": [234.50], "member": True}

]

Your tasks using lambda functions:
1. Calculate total spent by each customer
2. Find VIP customers (members who spent > $100)
3. Sort customers by average purchase amount
4. Get names of customers under 30

Challenge #3 Solutions

21

E-commerce Solutions

1. Calculate total spent by each customer
customers_with_totals = list(map(

lambda c: {**c, "total_spent": sum(c["purchases"])},
customers

))

2. Find VIP customers (members who spent > $100)
vip_customers = list(filter(

lambda c: c["member"] and sum(c["purchases"]) > 100,
customers

))
print("VIP customers:", [c["name"] for c in vip_customers])

3. Sort customers by average purchase amount
by_avg_purchase = sorted(

customers,
key=lambda c: sum(c["purchases"]) / len(c["purchases"]),
reverse=True

)
print("Highest avg purchase:", by_avg_purchase[0]["name"])

4. Get names of customers under 30
young_customers = list(map(

lambda c: c["name"],
filter(lambda c: c["age"] < 30, customers)

))
print("Young customers:", young_customers)

Lambda Best Practices

Writing Clean Lambda Functions

Follow these guidelines to write maintainable and readable lambda expressions.

Remember: Code is read more often than it’s written - prioritize clarity!

���

22

Lambda Best Practices: Do’s and Don’ts

Guidelines

� DO:

Simple, clear operations
numbers = [1, 2, 3, 4, 5]
squared = list(map(lambda x: x**2, numbers))
evens = list(filter(lambda x: x % 2 == 0, numbers))

Short data transformations
users = [{"name": "Alice", "age": 25}]
names = list(map(lambda u: u["name"], users))

� DO NOT:

Too complex for lambda
complex_func = lambda x: x**2 if x > 0 else abs(x) if x < 0 else "zero"

Multiple statements (impossible in lambda anyway)
This won't work:
bad_lambda = lambda x: print(x); return x**2

Lambda Limitations and Alternatives

23

When Lambda Is not Enough

� Lambda cannot do multiple statements
Need regular function for this:
def process_grade(score):

print(f"Processing score: {score}") # Side effect
if score >= 90:

return "A"
elif score >= 80:

return "B"
else:

return "C"

� Lambda for simple conditions
grade_simple = lambda score: "Pass" if score >= 60 else "Fail"

� Lambda cannot include assignments
Need regular function:
def calculate_with_logging(x):

result = x**2 + 2*x + 1 # Assignment
print(f"Calculated: {result}")
return result

Summary: Lambda Functions Mastery

What You’ve Learned Today

� Core Concepts: * Lambda functions are anonymous, single-expression functions *
Perfect for simple operations and data transformations * Excellent with map(), filter(),
and sorted()
� Practical Skills: * Data processing and filtering * Custom sorting logic * Functional
programming patterns * Real-world application scenarios
� Best Practices: * Keep lambdas simple and readable * Use regular functions for
complex logic * Prioritize code clarity over cleverness

Congrats!

� Congratulations! You’ve mastered Python’s lambda functions! ���

24

	On For Today
	Get Ready for the Lambda Functions!

	What Are Lambda Functions?
	Any Limitations to Lambda Functions?
	Lambda Functions: The Basics
	Lambda Functions: Multiple Arguments
	🤝 Quick Challenge #1 (2 minutes)
	Challenge #1 Solutions
	Meet Your New Best Friends! 👋

	Lambda vs Regular Functions
	Lambda vs Regular: Comparison

	Lambda with Built-in Functions
	Lambda with map()
	Lambda with filter()
	Lambda with sorted()
	🤝 Quick Challenge #2 (3 minutes)
	Challenge #2 Solutions

	Real-World Lambda Applications
	More Helpful Functions! 🎯
	Real-World Example
	Real-World Example
	Real-World Example
	Real-World Example
	🤝 Challenge #3: Real-World Practice (5 minutes)
	Challenge #3 Solutions

	Lambda Best Practices
	Lambda Best Practices: Do's and Don'ts
	Lambda Limitations and Alternatives

	Summary: Lambda Functions Mastery
	Congrats!

